ArchitectECA2030

SC 2 Demo 2.2 Key Card

Formal-Model-based Monitoring Device

Main aim									
A mon	itoring device ba	sed on formal methods.							
	5	g residual risk and monitorii	na functionality as	well as error correctio	on.				
		ulation of a HV battery, incl							
Partners		INRIA, AVL, TUG							
ECS value chain		Propulsion System / Tier 1							
State-of-the-a	rt			Beyond SotA / Inr	nnovation Targeted TRL				
• Predictive	maintenance me	thods are available		Formal-method-based residual TRL 4,					
Estimation	of residual risk v	with statistics or physics-of-	failure	risk estimation will be more TRL 5					
				accurate					
				Methods should be universally					
					applicable to other components				
Link to projec	tobiostivos				ther components				
Objective	lobjectives		Addressed (Y/N)	How					
•	rohust design ontim	ization for each part in the ECS	Addressed (T/N)	Monitoring devices based on formal methods will enhance the robustness of					
value chain	i obust design optim	ization for each part in the LCS	, I	components.					
	for safety validatior	of ECS value chain	N						
		f residual risks over the entire	Ŷ	Multiple methods to estimate residual risk will be developed in this demonstrator. This					
ECS value chain	5 .			gives us a chance to also compare different methods.					
O4 – End-user acceptance by trustworthy ECS value chain N									
O5 – Zero emissions, zero crashes, zero congestions by ECA2030-car				The goal of the Monitoring Device is to warn the system before a crash happens, and					
	, ,	5 ,	therefore reduce the number of crashes, to			wards the goal of zero crashes.			
					· · · · · · · · · · · , · · · ,	0			
Joint demonst	trator (JDEM SC2	2)		Linked supply cha	ins (Y/N)	Considered MonDev layers (Y/N)			
DEM 2.1	DEM 2.2	DEM 2.3							
				SC1	Ν	System (S)	Ν		
				SC2	Y	Subsystem (SS)	Ν		
				SC3	N	Component (C)	N		
SC	SC	SC		SC4	Y	Subcomponent (SC)	Ŷ		

Setup

AVL will provide the Co-Simulation, including the thermal Controller and a vehicle simulation.

Furthermore, AVL will provide a method for safety prediction and residual risk assessment.

INRIA will exploit the thermal model's formal model for diagnosis and residual risk • quantification.

TUG will develop a fault localization and error correction method. Based on this method monitoring functionality will be provided.

Benchmark scenario/mission/etc.

- Finding errors in HV batteries itself is very critical as the HV battery is used for a lot of autonomous systems. •
- The approach should be universally applicable to components of the propulsion system, which enables a wide range of V&V tasks. •

Functional completeness

- The failure model should be correct in the predefined usage space •
- KPI: Functional completeness by testing

Model-based diagnosis for fault localization

- The diagnostic model offers fault isolation and identification capabilities. Intermittent, incipient and novel faults should be considered.
- <u>KPI</u>: Model coverage ٠

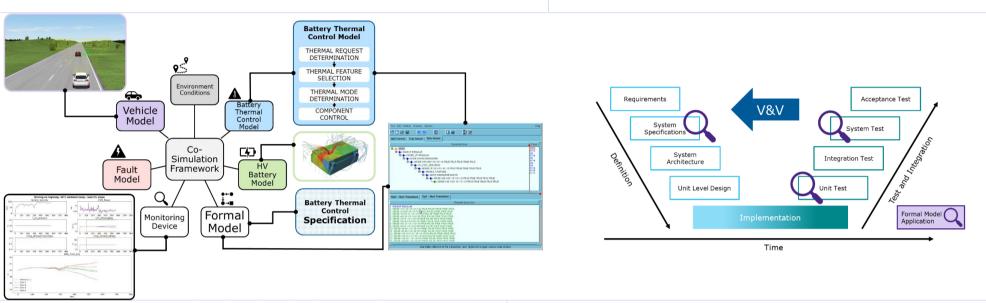
Correction and reaction to diagnosed faults

- For a diagnosed fault, the system provides an actionable strategy
- KPI: Classification error •

Reliability

- The failure model has to be more reliable than the SUT •
- KPI: Divergence between failure model and SUT • Real time online diagnosis
- Faults have to be detected and diagnosed in real time. The sensors and • interface must also be real-time capable.
- <u>KPI</u>: Latency •

Availability

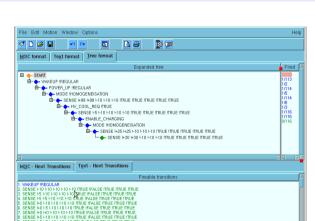

- The battery of the SUT needs to provide fast enough measurements such ٠ that the failure model can calculate the degeneration of the battery
- KPI: Availability of measurement data •

Evaluation

Evaluation platform will be a Co-Simulation framework including an ADAS/AD driving model, a HV battery model and a thermal control unit of the HV battery. In addition, the framework enables to add further methods and architectures as a Monitoring Device to perform diagnose calculations.

Current status/demonstration			Highlights and Conclusion			
•	A FMEA table is generated to provide a detailed description and specification of possible faults in the HV battery system during operation or charging.	•	Application of formal models reduces risks through detailed system specification analysis, capturing all requirements, models, and			
•	Based on the FMEA table a fault injection model is developed to validate the formal		interpretations.			
	model and model-based diagnosis approach.	•	The formal model serves as an abstract reference for the thermal			
•	Formal model of the Thermal Control Unit is developed and validated - offline combination with the Co-Simulation framework by trace analysis.		controller, assuming all properties corresponding to requirements are met.			
•	Probabilistic fault criticality estimation methods applied on the case-study.	•	Probabilistic analysis aids in selecting countermeasures by estimating			
•	Completion of the formal model, requirements, and their verification.		the criticality of requirements and system faults.			
•	Submitted research paper.	•	Formal models have limitations, including the inability to address			
•	Development of Monitoring Device based on machine learning algorithm to identify		unknown risks and properties beyond the operational domain.			
	an abnormal behavior of the system under test.	•	General health monitoring using a hierarchical concept (Task 3.3) is			
•	Simulations are executed based on different conditions related to the introduced		deemed necessary for advanced analysis, complementing the formal			

model's limitations.

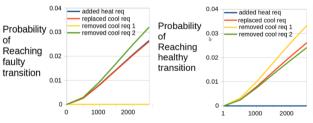

Model	Parameter for fault simulation	Input	Output	Value Type	Unit	Range	Signal/Parameter	
	Ambient temperature	х		float	°C	-30 → 50	Environment Setting	
Environment Conditions	Initial coolant temperature	х		float	°C	-30 → 50		
	Velocity	х		float	km/h	0 → 200		
	Acceleration	х		float	m/s²	$0 \rightarrow 6$	Vehicle drive cycle &	
Vehicle	Road Profile	х		float	%	-20 → 20	power request	
	Brake	х		float	m/s²	$0 \rightarrow 10$		
	Cell temperature	х		float	°C	-30 → 60	Vehicle sub-component behavior	
HV Battery	Power max		х	float	kW	200 → 300 (peak) 100 → 150 (cont.)		
Thermal Controller	Cooling temperature	х		float	°C	-30 → 60	Vehicle sub-component behavior	
Thermal Controller	Cooling flow rate		х	float	L/min	0 → 20		


FMEA table for fault simulation in the thermal control unit.

No electric driving • Cooling system performance too low 8 Vehicle im Cell overtemperature Battery too warm Release of toxic gases 10 Component overheating Thermal event 10 Improper filling Vehicle immobilit Inhomogeneous temperature No electric driving 8 Cell temperature spread is too high spread inside the battery Reliability not achieved 7 Cell differential ageing (hot spots) Durability / lifetime target not achievable 8 Battery too cold during Cooling system performance too low Vehicle range not achieved 9 Cooling system pressure drop too high driving Vehicle range not achieved 9 Battery too cold during Cooling system performance too low Driving discomfort charging Improper filling Tool low pure electric range Vehicle immobility 8 Improper filling Component overheating Durability / lifetime target not achievable 8 Cooling system pressure drop too high

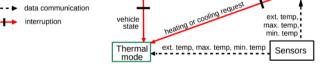
pav. 1: The table shows the available simulation enviornment paramter configuration to trigger different behavior of the overall system and in specific the thermal control unit.

pav. 2: FMEA table with sevirity risk assesment showing possible single faults which could appear during operation in the HV battery system including the thermal control unit.



pav. 2: Step-by-step exploration of the formal model.

finite state automaton


Requirements based analysis results

- Probability of reaching faulty (resp. healthy) action after at most MAX actions
- Results for 4 faults in the Thermal Request automation
- 1 addition, 2 removal, 1 replacement

pav. 3: CADP software solution for validity check of the formal model based on the simulated traces of the high voltage battery system.

Thermal request

pav. 4: Formal model schema to show the specifications of one of the high voltage battery system tranistion states.

Max action done before reaching faulty/healthy transition

Impact

Usage of formal model methods and model-based diagnosis to detect a faulty system during runtime. This offers a way to identify the residual risk and as well to minimize the risk of undetected faults.

Used standards	Future standardization potentials
• ISO 26262, ISO/PAS 21448:2019 (SOTIF), IEC 61508 (Eight parts 0-7)	Not perceived yet

ArchitectECA2030 has been accepted for funding within the Electronic Components and Systems For European Leadership Joint Undertaking in collaboration with the European Union's H2020 Framework Programme (H2020/2014-2020) and National Authorities, under grant agreement n° 877539. Demo Leader Contacts: Company Name, Surname, email.