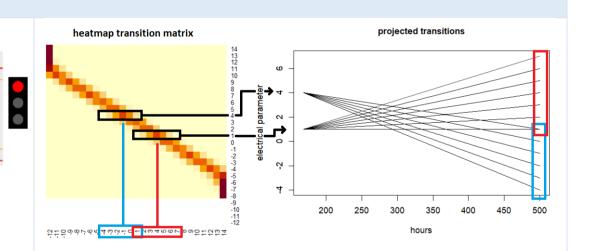
ArchitectECA2030

SC 4 Demo 4.2 Key Card

Lifetime Drift Model for Discrete Electrical Parameters

Main aim


- Statistical lifetime drift model for discrete parameters.
- Calculation of guard bands based on quality targets for lifetime drift effects.
- Calculation of remaining useful life (RUL) based on a bit-flip count provided by IFAG

• Calculation of Termanning userur	ille (NOL) based oil	a bit-iiip count pic	vided by IFAG.		
Partner IFAG, IFA	IFAG, IFAT				
ECS value chain Semicon	Semiconductor				
State-of-the-art			Beyond SotA / Innovation	Targeted TRL	
Statistical lifetime drift model for coVarious models available	ontinuous paramete	ers	 Statistical lifetime drift model for discrete parameters 	TRL 4 – technology validated in lab	
Link to project objectives					
Objective		Addressed (Y/N)	How		
O1 – Continuous robust design optimization for value chain	each part in the ECS	N			
O2 – Framework for safety validation of ECS value chain		Y	Ensure compliance of semiconductor devices over lifetime.		
O3 – Identification & management of residual risks over the entire		Y	Guard band lifetime drift of semiconductor and further devices.		
ECS value chain					
O4 – End-user acceptance by trustworthy ECS value chain Y		Υ	Ensure datasheet compliance over lifetime	2.	
O5 – Zero emissions, zero crashes, zero congestions by ECA2030-car					

US - Zero erriissioi	iis, žeio ciusiies, žei	io congestions by E	CAZUSU-CUI	/ V				
Joint demonstr	rator (JDEM1)				Linked supply cha	ains (Y/N)	Considered MonD	Dev layers (Y/N)
DEM1.2	DEM1.3	DEM4.1	DEM4.2	DEM4.4	SC1	N	System (S)	N
					SC2	N	Subsystem (SS)	N
					SC3	N	Component (C)	N
					SC4	Υ	Subcomponent (SC)	Υ

Setup

- Longitudinal data
- highly censored
- small sample sizes
 - Semi-parametric Markov
 transistion model based on
 empirical estimations of transition distributions

Benchmark scenario/mission/etc.

Benchmark: Lifetime drift model for continuous parameters by Lewitschnig and Sommeregger – https://www.sciencedirect.com/science/article/pii/S0026271422003006

KPIs (related to requirements)	Baseline
 Continuity in time Elimination of measurement errors Remaining useful life 	KPIs are categorial variables (yes/no)

Evaluation

- Simulation study in R
- Validation on real data
- Comparison with adapted state-of-the-art methods

Current status/demonstration	Next steps (timeline)
 Model development finished. 	Scientific publication
 Verification via Monte-Carlo-simulation done. 	• Scientific publication

• Application of this drift model at bit-flip counter (SC4 – Demonstrator 4.1)

Impact

- Enabling of PHM (prognostics and health management) for discrete parameters.
- Drift modelling for discrete parameters at qualification tests possible.
- Optimized guard bands for discrete parameters.

Used standards	Future standardization potentials
• n.a.	Drift criteria in AEC automotive standards.