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Abstract
A new dataset for automated driving, which is the subject matter of this paper, identifies and addresses a gap in existing
similar perception datasets. While most state-of-the-art perception datasets primarily focus on the provision of various
onboard sensor measurements along with the semantic information under various driving conditions, the provided
information is often insufficient since the object list and position data provided include unknown and time-varying errors.
The current paper and the associated dataset describe the first publicly available perception measurement data that
include not only the on-board sensor information from the camera, Lidar, and radar with semantically classified objects
but also the high precision ground-truth position measurements enabled by the accurate RTK-assisted GPS localization
systems available on both the ego vehicle and the dynamic target objects. This paper provides insight on the capturing
of the data, explicitly explaining the metadata structure and the content, as well as the potential application examples
where it has been, and can potentially be, applied and implemented in relation to automated driving and environmental
perception systems development, testing, and validation.
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1 Introduction

Considering the fact that the majority of traffic accidents
are induced by human errors, road traffic safety can
be significantly increased by utilizing advanced driver
assistance systems (ADAS) and automated driving (AD).
There are several studies indicating this fact e.g., as shown by
Lundgren and Tapani (2006) in simulation and Hannawald
and Kühn (2015) by traffic data analysis. These ADAS/AD
functions, in connection with several other measures, are part
of the European Commission (2019) “Road Safety Policy
Framework” and are expected to play a crucial role in the
EU’s ‘vision-zero’ goal. In addition, ADAS/AD functions
are expected to deliver additional benefits. Fagnant and
Kockelman (2015) predict benefits like higher transport
efficiency, better mobility accessibility for elderly people,
increased convenience and comfort, and new business
models like car sharing in the long term.

Despite the broad variety of safety and mobility benefits,
the mass market uptake of ADAS/AD functions and
especially the release of vehicles with higher autonomy
levels (i.e. SAE level 3+ vehicles, where the autonomy levels
are defined by the SAE J3016) are rather slow compared
to initial predictions. A recent study Doll et al. (2020)
predicts that Level 2+ systems are going to be the main
growth drivers in the automated driving market. ISO PAS
1883:2020 defines that systems labeled as SAE Level-3
with ‘conditional driving automation’, can handle dynamic
driving tasks (DDT) under certain conditions known as the
operational design domain (ODD). The driver can take the
eyes off the road and is only required to react to a take-over
request to control the vehicle.

The shift from Level-2 to Level-3 is a huge leap as
the responsibility of environment perception and safety
assurance is transferred from the driver in Level-2 to the
automated driving system (ADS) in Level-3 vehicles. This
requires a reliable environment perception system (EPS).
EPS usually utilizes a combination of several sensors,
possibly including multiple cameras, radars, lidars as well
as ultrasonic sensors with superfluous combinations. EPS
is also tasked with the processing and contextual fusion
of the massive amounts of corresponding sensor data. To
the authors’ best knowledge, there are only two officially
approved and road-legal SAE Level-3 systems available on
the market, namely the Mercedes Drive Pilot Daimler (2021)
and Honda Sensing Elite system Honda (2020), both of
which provide L3 automation under certain ODDs.

“Honda Sensing Elite” is a suite of advanced safety and
driver-assistive (ADAS) technologies currently available on
Honda vehicles. The Honda Legend Hybrid EX Sedan is the
first vehicle to be offered to end customers with the world’s
first certified Level 3 autonomous driving technology,
starting in March 2021.The Mercedes Drive Pilot is another
conditionally automated Level-3 self-driving technology
capable of monitoring the environment and performing all
tasks without driver intervention until it actively requests
the driver to take the wheel. In the new 2021 S-Class, the
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Drive Pilot takes over these tasks. However, it only works
up to a speed of 60 km/h, which is the autonomous driving
speed currently permitted in Germany. The limitation of
maximum velocity is also in line with the restrictions of the
first version within the UNECE R157 Regulation 157 on the
“Approval of Automated Lane Keeping Systems (ALKS)”,
the first and probably most comprehensive international
policy issued for the approval of ADS. These two examples
show that, although released to the market, the mass-market
accessibility, availability, and respective uptake of highly
automated vehicles, let alone the SAE Level-3 vehicles with
conditional automation, is still very low.

The rules and regulations for automotive vehicle type
approval are under constant development and improvement.
UNECE R157 with its two amendments is just one example
focusing on the ALKS, for the changes in many approval-
relevant documents. Another example is the release of a draft
”New process-oriented” automated driving type approval
approach (for SAE Level-3+ vehicles) described in the
document UNECE WP.29.

While the current state-of-the-art in automation and
robotics can potentially allow higher levels of autonomy
in ADS, lack of proper testing, verification, and validation
procedures hinder the development and mass-market
utilization of such systems Solmaz et al. (2021b,a). The
classical automotive testing and validation approaches for
certifying automated vehicles would require several millions
of kilometers of on-road testing time and are practically
unfeasible Kalra and Paddock (2016). Simulation techniques
can potentially be utilized for this purpose, but the fidelity
and modeling accuracy requirements need to be further
investigated as pointed out by Dueser et al. (2019).

Towards virtual testing of automated driving systems,
recently completed SetLevel Project proposed four sensor
model fidelity levels in the order of increasing fidelity as
reported in Rainer Aue (2022):

1. Idealized Sensor model,
2. Stochastic Sensor model,
3. Phenomenological Sensor model,
4. Physical Sensor model.

Each fidelity level model can provide various individual fea-
tures, which may suit different modeling needs, particularly
in the context of EPS. To drive the development and testing
of highly automated systems further, more diverse and novel
testing approaches as well as utilization of more accurate
datasets with additional information are required.

Datasets are typically utilized during the development
phase of the EPS for AI-based algorithm development, ver-
ification, and validation steps. Such datasets usually contain
recorded sensor data along with semantic information in
the form of labeled objects. This information is typically
utilized for object detection and classification development
and testing pipelines. Additionally, these datasets can also
be used for the development of specific features for specific
sensor model types. However, precise position information
of the external objects is missing in such datasets.

We present in this paper a new dataset that we name ViF-
GTAD after “Virtuelles Fahrzeug - Ground Truth dataset for
Automated Driving”. The fact that all traffic objects within
the driving scenarios have ground-truth position information,

as ascertained by the extremely precise RTK-GPS systems
employed in each car, distinguishes this dataset from others
in the literature. In doing so, the corresponding position
information of each vehicle was calibrated precisely before
the measurement runs, and the mounting positions of the
GPS antennas as well as the dimensions of the vehicles were
taken into account.

The current paper describes the new ViF-GTAD dataset
Haas et al. (2023), which should serve as a user manual
for the associated data recordings of a set of typical
driving scenarios. The dataset contains 5 different scenarios
that are representative of typical test cases for ADAS
function approval as well as requirements for sensor model
development. The development of sensor model features
is also reflected in the scenario selection. In the paper,
we also discuss other possible application areas for the
corresponding dataset with examples that could aid ADAS
and ADS development.

The remainder of this paper is organized as follows.
In Section 2, we analyze state of the art in automotive
datasets and provide a comparison between them in terms
of information content. In Section 3, we first introduce
the measurement campaign enabling the collection of the
corresponding data in subsection 3.1 as well as the vehicle
configuration and setup in subsection 3.2. Then we describe
the data content and structure in detail for each sensor data in
subsection 3.3 and then define the test scenarios in subsection
3.4. In Section 4 we describe 3 specific use cases where the
described data can potentially be utilized in relation to EPS
development. Finally, the conclusions and future work are
given in Section 5. A list of commonly used nomenclature is
also given at the end of the text.

2 Related Work

In this section, an overview of the currently available public
datasets with comparable content to the ViF-GTAD dataset
is given. Most of these datasets are commonly utilized for
automated driving and perception algorithm development,
verification, and validation purposes in the literature.

The A2D2 dataset Geyer et al. (2020) was recorded in 3
German cities and provides semantic segmentation images,
semantic point clouds, and annotations 3D bounding box for
a smaller part of the dataset.

The ApolloScape Huang et al. (2020) project provides
different datasets including, e.g., annotated Lidar point cloud
and stereo camera datasets for object detection, manually
annotated trajectories for prediction algorithms, and several
more. The data was recorded in a large city in China with
heavy traffic.

ArgoVerse offers 2 datasets (Chang et al. (2019), Wilson
et al. (2021)) where both have been recorded in cities in the
USA. Both datasets contain HD maps and partly annotated
Lidar and stereo camera scenarios. The second also contains
trajectory information for targets and generally refines and
extends the first dataset.

The BDD100K dataset Yu et al. (2020) provides labeled
3D bounding box data and semantic segmentation data based
on cameras recorded in several different US cities and rural
areas under different weather and time of day conditions.
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Table 1. List of currently available datasets for autonomous driving. The list shows the sensor data included in the corresponding
dataset.

Dataset Lidar Radar Camera GPS Ego GPS Targets Additional Information

A2D2 Geyer et al. (2020) ✓ ✓ 3D bounding boxes
ApolloScape Huang et al. (2020) ✓ ✓ ✓
Argoverse1 Chang et al. (2019) ✓ ✓ ✓ 3D bounding boxes
Argoverse2 Wilson et al. (2021) ✓ ✓ ✓ 3D bounding boxes

BDD100K UC Berkeley Yu et al. (2020) ✓ ✓
Lane markings,
3D bounding boxes

Brno Urban Ligocki et al. (2020) ✓ ✓ ✓ ✓
YOLO-classified
camera images

CADCD Pitropov et al. (2020) ✓ ✓ ✓
Adverse weather,
3D bounding boxes

CityScapes Cordts et al. (2016) ✓ ✓ Semantic information

Dense Bijelic et al. (2020) ✓ ✓ ✓
Road friction sensor,
weather station data,
3D bounding boxes

EU Long-term Dataset Yan et al. (2020) ✓ ✓ ✓ ✓
Ford AV Agarwal et al. (2020) ✓ ✓ ✓
Honda 3D Patil et al. (2019) ✓ ✓ 3D bounding boxes
Kitti Geiger et al. (2013) ✓ ✓ ✓

Leddar PixSet Déziel et al. (2021) ✓ ✓ ✓ ✓
One Solid-state and
one mechanical lidar

Woven Perception Houston et al. (2020) ✓ ✓ 3D bounding boxes
Málaga Urban Blanco-Claraco et al. (2014) ✓ ✓ ✓
NuScenes Caesar et al. (2020) ✓ ✓ ✓ ✓ 3D bounding boxes
Oxford RoboCar Maddern et al. (2017) ✓ ✓ ✓
PandaSet Scale (2021) ✓ ✓ ✓
Radiate Sheeny et al. (2020) ✓ ✓ ✓ ✓
Waymo Perception Ettinger et al. (2021) ✓ ✓ 3D bounding boxes

ViF-GTAD Haas et al. (2023) ✓ ✓ (✓) ✓ ✓
Lane markings and
objects from MobilEye
instead of raw images

The Brno Urban dataset Ligocki et al. (2020) provides
YOLO-classified camera images with 2D bounding boxes.
The dataset was taken in urban, suburban, and highway
areas around Brno, Czech Republic, in varying weather and
lighting conditions.

CADCD Pitropov et al. (2020) focuses on the effects of
adverse weather on automotive Lidar and cameras including
labeled 3D bounding boxes. It was recorded in the city and
rural areas in the Waterloo region in Canada during winter.

The CityScapes dataset Cordts et al. (2016) focuses on
semantic segmentation of urban street scenarios and was
recorded in around 50 German cities. The dataset features
dense semantic segmentation and instance segmentation for
30 classes of objects.

Dense Bijelic et al. (2020) features a variety of datasets
focused on the effects of various weather conditions on a
large amount of different automotive sensors. The dataset
partly includes annotated 3D bounding boxes and covers
thousands of kilometers in urban and rural areas around
northern Europe.

The EU long-term dataset Yan et al. (2020) utilizes
11 sensors with highly overlapping fields of view. It was
recorded mostly in downtown and some sub-urban areas
in Montbéliard, France, in varying daytime and weather
conditions. It includes a large number of roundabouts.

Ford AV Agarwal et al. (2020) provides data recorded in
different weather, lighting, and traffic conditions all around
Michigan, USA, including the city of Detroit that was

collected over the course of more than 1 year. It also provides
3D mapping data for the driven routes.

The 3D dataset by Honda Patil et al. (2019) includes
annotated 3D bounding boxes with 8 classes of objects in
crowded and traffic intense areas around several US cities.
It aims to provide data for 3D object detection and tracking
algorithms.

The Kitti dataset Geiger et al. (2013) provides data for 3D
object detection and tracking as well as pixel and instance-
level semantic data. The dataset was recorded in urban, rural,
and highway areas around Karlsruhe, Germany.

The PixSet by Leddar Déziel et al. (2021) includes
annotated 3D bounding box data with 22 classes of objects. It
provides full-waveform data from a solid-state Lidar and was
recorded in high-density urban and suburban areas around
Canada in different weather conditions.

The Woven perception dataset Houston et al. (2020)
(previously Lyft) offers annotated 3D bounding boxes for
raw camera and Lidar data and HD semantic maps collected
in urban and suburban areas around Palo Alto, USA, to
support the development of object detection algorithms.

The Malaga urban dataset Blanco-Claraco et al. (2014)
offers high-resolution and high-rate data from stereo cameras
and Lidar in various urban scenarios around Malaga to
provide data for computer vision algorithms in automotive
applications.

NuScenes Caesar et al. (2020) offers an annotated 3D
bounding box for parts of the various scenarios collected
with 13 automotive sensors in 2 traffic-dense cities. The
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sensors cover a 360° view around the vehicle to provide data
for perception algorithms in autonomous driving.

The Oxford RoboCar dataset Maddern et al. (2017) offers
around 100 runs of the same route over the course of
more than one year in various weather, lighting and traffic
conditions taken in Oxford, UK, to allow for long-term
experiments on localization and mapping of dynamic urban
environments.

PandaSet Scale (2021) provides labeled 3D bounding
boxes with 28 object annotation classes as well as segmented
point clouds with 37 segmentation labels. The dataset was
recorded in urban areas around San Francisco, USA.

The Radiate dataset Sheeny et al. (2020) provides data
for several sensors, e.g., high-resolution 2D annotated radar
data, collected in urban and highway scenarios around
Edinburgh, UK. It focuses on various adverse weather
conditions as well as different lighting conditions.

Waymo Open Perception Ettinger et al. (2021) offers
labeled 2D and 3D bounding boxes as well as HD maps and
labeled 2D and 3D semantic data in various urban scenarios
recorded around San Francisco, USA.

Table 1 lists the above-named datasets in a more
comprehensive way highlighting the sensor configuration
and dataset-specific additional information for each dataset.
The last row indicates the corresponding information for
the new ViF-GTAD dataset. As can be observed from
Table 1, high-precision GPS positions (i.e., the ground truth
information) of the target objects are available only in the
new ViF-GTAD dataset.

While most of the datasets utilize similar sensor
configurations and provide bounding boxes, some popular
examples such as the Kitti Geiger et al. (2013), the
CityScapes Cordts et al. (2016), and the NuScenes Caesar
et al. (2020) do not contain the accuracy information
regarding object-list provided.

In Section 4 possible applications of this dataset are
shown, especially under focus are use cases where the
ground-truth information about all targets is a major benefit
or even required. For example, the proposed sensor model
training approach in Section 4.1 is based on the comparison
of tracked object data from a sensor and the ground-truth
position of the tracked vehicle. This means only with the
introduced dataset, the training of this sensor model is
possible. For other applications such as sensor fusion, or
lidar localization, see Sections 4.2 and 4.3, the ground-truth
information of all targets enables testing and validation of the
developed approaches.

3 The ViF-GTAD Dataset
Ground truth refers to the true, real-world state of the
environment in the context of automotive vehicles, such
as the position, speed, and direction of other vehicles,
pedestrians, and obstacles, as well as road conditions such as
the location of lanes, traffic signals, and stop signs. Ground
truth is typically classified as static and dynamic. The static
ground truth, as the name implies, includes all static objects
in the environment. (e.g. road layout, traffic signs, buildings,
road infrastructure, etc.). In contrast, dynamic ground truth
represents all moving objects relative to the static world (e.g.,
VRUs, vehicles, etc.) around the ego-vehicle.

In this section, we describe the ViF-GTAD dataset in detail
including the test campaign, vehicle setup, data structure, and
test scenarios involved. The ViF-GTAD dataset is available
to download from the following public repository: Haas et al.
(2023).

First, we describe the data acquisition campaign explain-
ing the capturing of the static ground truth and the dynamic
ground truth of the target vehicles. Later in the section,
we explain the ego-vehicle measurement setup and then the
structure and content of the new dataset with the ground truth
information.

3.1 TestEPS Measurement Campaign
The data collection was made in the scope of a recent
exploratory project named TestEPS aiming at a transnational
testing region development for automated driving and
environmental perception systems. The exploratory projects
TestEPS and CentralSystem prepared two larger projects
within the EUREKA cluster (details of the project can be
found in Reckenzaun et al. (2022)). While the data collection
was done in the exploratory phase, the data preparation
for public release was done within the EUREKA project.
More details about the measurement campaign and data are
available on request from BME (2020). The exploratory
project is the result of a bilateral agreement on the ministerial
level between Hungary and Austria in 2017 for fostering
cooperation on the testing and development of connected,
automated vehicles. Several partners joined the measurement
campaign resulting in a test vehicle fleet of 13 vehicles
including passenger vehicles of various sizes along with a
truck and a semi-trailer.

The actual measurement was conducted on a closed
measurement section (GNSS coordinates: 47.625778,
17.270162) near the Hungarian city of Csorna in the last
week of June 2020. Csorna is a small town in North-West
Hungary, close to the crossing of two main regional highway
sections, M85 and M86.

The measurement was done on Section-1 (red) and
Section-2 (blue) of the motorway stretch as illustrated in
Figure 1. Section-1 serves as an interchange area where the
two carriageways (M85 & M86) have different horizontal
and vertical alignments. The road sections in each direction
have two 3.50-m-wide lanes for the through traffic, and there
are also additional accelerating/decelerating lanes linked to
junction ramps. In contrast, Section-2 can be categorized
as an open highway with a roughly 300-m-long dual
carriageway section including two 3.50-m-wide traffic lanes,
and 3.00 m wide hard shoulder on both sides, in each
direction.

Static ground truth is usually captured using vehicles
equipped with highly sophisticated measurement equipment.
Measurement of the static ground truth is easier compared
to the dynamic counterpart since several measurement runs
can be conducted on the measurement section and the
individual measurement runs can be combined. Such a
repetitive process enables the detection of blind spots and
smooths the individual faulty measurement points.

Dynamic ground truth, on the other hand, can be obtained
by fusing information from a multitude of sources including
road infrastructure sensors, drones, as well as onboard
sensors on the test vehicles. For the dataset generation as part
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Figure 1. Sections of the test site (3.5 km in all) located near
Csorna city (Hungary) on route E65

of this test campaign, the only common requirement for the
measurement vehicles was to include a high-precision GNSS
system with RTK corrections which were used to capture
the dynamic ground truth of the target vehicles. All the test
vehicles in this scope had different sensor configurations
other than the high-precision GNSS localization systems,
which were individually calibrated to measure the exact
antenna mounting positions and the vehicle outer dimensions
for the calculation of accurate bounding boxes.

Further details on the measurement campaign can be
found in an initial publication on the measurement campaign
Tihanyi et al. (2021).

3.2 Vehicle setup and measurement hardware
As an active player in ADAS/AD system development, Vir-
tual Vehicle Research GmbH also took part in the measure-
ment campaign, as described in the preceding section, with
one of its generic Automated Drive Demonstrator (ADD)
vehicles. The Ford Fusion Hybrid MY2017 (seen in Figure
2) was the vehicle used for this purpose, which is equipped
with several additional sensors and computational hardware
as well as custom software components.

Figure 2. ViF’s Automated Drive Demonstrator (ADD) Vehicle.

First and foremost, the ADD vehicle is equipped with
the DataSpeed drive-by-Wire Kit*, which enables access
to most of CAN data as well as the control actuators for
ADAS/AD system development. The ADD Vehicle is also
equipped with additional sensors, which can be modified

depending on the measurement or the use-case requirements.
To support the aims of the measurement campaign, the ADD
vehicle was equipped with a high-accuracy dual-antenna
DGPS system to provide ground truth position information.
A Novatel ProPak6 RTK-GPS receiver was utilized for the
measurement of the precise position supported by TCP/IP-
based RTK correction service providing sustained cm-level
accuracy. Additionally, the ADD vehicle also logged other
sensor data relevant to the perception algorithm development
and validation purposes. These sensors specifically included
a MobilEye630 intelligent camera, a Continental ARS408
Radar† and an Ouster OS1-64 Lidar sensor‡. Figure 3 shows
the mounting positions of these perception sensors. For the
data acquisition, ROS-based Autoware.AI§ software stack
running on an Ubuntu X86-PC was utilized to log the data
in rosbag format. In table 2, detailed measurement values
for the position of the sensors in the vehicle are to be used
for the transformation of each sensor’s data into a common
coordinate system. The origin of the coordinate system for all
transformations is the center of the rear axle on the vehicle.
All transformation values are, of course, also included in the
data files provided in the dataset. The GPS module’s position
is not given in the table as it is located directly at the origin
at the center of the rear axle and has no offset.

Figure 3. ViF’s ADD-Vehicle sensor setup and the
corresponding mounting positions.

Table 2. The positional offsets of the sensors with respect to
the middle of the rear axle in meter. The x-axis is pointing along
the driving direction, the y-axis to the left, and the z-axis
towards the sky.

Sensor Offset in x, y, z [m]

Ouster OS-1 Lidar 1.625, 0.0, 1.19
Continental ARS408 Radar 3.75, 0.25, 0.5
Mobileye630 Camera 1.85, 0.15, 0.95

∗https://www.dataspeedinc.com/
†https://conti-engineering.com/components/ars-408/
‡https://ouster.com/products/os1-lidar-sensor/
§https://www.autoware.ai/
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3.3 Dataset Structure
Internally, ROS uses so-called nodes to, e.g., receive and
preprocess data from a sensor, execute algorithms using
specific data, or command actuators to execute actions. These
nodes send messages to each other using a publish-subscribe
principle. The nodes publish data to certain topics and
subscribe to other topics to receive data from other nodes.
The data logging mechanism is rather simple as the user
can either log every message sent between the ROS nodes
or can explicitly state the nodes whose messages should
be stored. Each stored entry in the rosbag file consists of
a Unix format timestamp, the topic as a string, and the
message itself. The messages themselves vary widely in their
structure as they can contain any kind of data format, data
type, and structure defined by the node that generated the
message. In our case, the Ford Fusion stored the messages
of a total of 39 different topics with 23 different data types
for the messages (see Figure 4 for an excerpt of topics in the
rosbags). We will not give the structural details of each of
these topics as this would exceed the scope of this paper but
focus on the messages from the Ouster OS1-64 Lidar sensor,
the MobilEye630 series intelligent camera, the Continental
ARS408 Radar, and the Novatel ProPak6 RTK-GPS receiver.
Furthermore, we will give the structure of the GPS data of the
other vehicles in the measurement campaign.

rosbag
/camera0/camera info
/can bus 1/can rx
/gps/corr imu
/gps/enhanced fix
...
/mobileye/objects
/mobileye/roadmarkings list
/tracked objects mobileye
/os1 cloud node/points
/os1 img node/intensity image
...
/sensor/lrr front/clusters
/sensor/lrr front/clusters specific
/tf

Figure 4. Excerpt of topics included in a rosbag file recorded
by our test vehicle.

3.3.1 Ouster OS1-64 Lidar Data Structure: The Ouster
OS1-64 Lidar generates a point cloud with 64 layers where
each layer provides up to 2048 points. The raw data for each
point consists, amongst other parameters, of the measured
range, angle, and reflectivity. From these parameters, several
topics are generated in our test vehicle to allow for easier
usage and post-processing of the raw data. Table 3 shows
the published topics related to the Ouster OS1-64 on our
test vehicle. For example, the topic os1 cloud node/points
contains messages of the ROS data type PointCloud2¶ to
represent the 3D point cloud of one recorded frame.

Each PointCloud2 consists of the information of a
point cloud frame with several data parameters including
data, width, height, fields, etc. The data field contains the
information for each single point of the point cloud. The

Table 3. Most important topics with the corresponding data
type of the Ouster OS1-64 Lidar on our test vehicle.

Topic Data type

/os1 cloud node/imu sensor msgs/Imu
/os1 cloud node/points sensor msgs/PointCloud2
/os1 img node/intensity image sensor msgs/Image
/os1 img node/noise image sensor msgs/Image
/os1 img node/range image sensor msgs/Image

structure of the Ouster OS1-64 Lidar data can be seen in
Table 4.

3.3.2 MobilEye630 Camera Data Structure: The Mobil-
Eye630 camera is equipped with object detection software
that allows identification and tracking of other vehicles,
pedestrians, bicycles, etc., detection of road markings and
traffic signs, and the taking of black-and-white images.
The raw data cannot be accessed as the camera directly
computes the 3D bounding boxes for the detected objects,
an estimation of the distance and headings of the objects,
and the information and location of lane markings and traffic
signs. Table 5 shows the most important published topics on
our test vehicle related to the MobilEye630 camera.

For each frame, the MobilEye630 camera produces a list
of objects, lane markings, and traffic signs. In Table 6,
Table 7, and Table 8, the most important parameters
regarding the object data, road markings data, and traffic sign
data produced by the camera can be seen.

3.3.3 Continental ARS408 Radar Data Structure: The
Continental ARS408 Radar is a long-range Radar with up to
250 m detection range. It generates a list of cluster points
for detected objects. A single object can generate several
cluster points depending on its size, reflectivity, and angle
with respect to the radar’s position. The topics recorded on
our test vehicle can be seen in Table 9.

The clusters topic is a post-processed list extracted
from the clusters specific list and contains a list
of the calculated Cartesian coordinates for the lateral
and longitudinal offset of each cluster point as well as
velocity, standard deviation, and the radar cross-section
value. Table 10 shows the most important parameters related
to the clusters.

3.3.4 Novatel ProPak6 RTK-GPS Data Structure: The
Novatel ProPak6 is a high-precision GPS module installed
in the middle of the rear axis on our test vehicle. It uses
RTK support to further enhance the precision of the vehicle’s
position compared to plain GPS. It produces a large number
of topics that can be seen in Table 11.

The most important topic is /gps/ins pvax since it
includes the GPS time data, the position, orientation, and
standard deviation of position and orientation. The most
important parameters related to this topic can be seen in
Table 12.

¶https://docs.ros.org/en/melodic/api/sensor msgs/html
/msg/PointCloud2.html
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Table 4. Parameters with the corresponding data types of the Ouster OS1-64 Lidar on our test vehicle.

Parameter Description Unit Value Range

x, y, z Cartesian coordinates m ± Range of Lidar (Float)
intensity number of photons reflected from surface - Int
reflectivity calculated from intensity using a characteristic curve - Int
ring Detecting layer on sensor - 0 - (#rings - 1) (Int)
range Distance to hit surface mm 0 - Range of Lidar (Double)
t Time until laser response received ns 64-bit Int

Table 5. Most important topics with the corresponding data type of the MobilEye630 Camera on our test vehicle.

Topic Data type

/mobileye/objects common msgs/ObjectList
/mobileye/roadmarkings list environment model msg/RoadMarkings
/mobileye/trafficsigns list environment model msg/TrafficSignList

Table 6. Most important parameters with the corresponding data types of the MobilEye630’s object list on our test vehicle.

Parameter Description Unit Value Range

id Unique Id of the object - Int
existence probability General probability of the object’s existence - Float
class probability Probability of object classes (e.g. car, truck, etc.) % 0-1 (Float)
position x/y/z coordinates of the bounding box center m 0 - Range (Float)
orientation quaternions of the bounding box - Float
dimension width/length/height of bounding box m Float
acceleration directional accelerations of the bounding box m

s2
Float

co-variance Standard deviations for each physical quantity - Float

Table 7. Most important parameters with the corresponding data types of road markings detected by the MobilEye630 on our test
vehicle.

Parameter Description Unit Value Range

quality Enum of the quality of lane measurement - Int
width Width of detected lane m [0 - 2.5]
coefficients Parameters of the cubic polynomial of detected lane - Float
lane type Enum type of detected lane - Int
type left or right lane - Int

Table 8. Parameters with the corresponding data types of the traffic signs detected by the MobilEye630 on our test vehicle.

Parameter Description Unit Value Range

id Unique Id of the object - Int
valid Correct detection of the sign - 0 or 1
sign type Enum for different signs - Int
supplement type Enum for supplementary signs - Int
position x/y/z coordinates of the center of the traffic sign m 0 - Range (Float)

Table 9. Most important topics with the corresponding data type of the Continental ARS408 Radar on our test vehicle.

Topic Data type

/sensor/lrr front/clusters common msgs/ClusterList
/sensor/lrr front/clusters specific continental msgs/ClusterListARS408

Table 10. Most important parameters with the corresponding data types of the Continental ARS408 clusters on our test vehicle.

Parameter Description Unit Value Range

position x/y/z coordinates of the cluster point m Float
velocity velocity in x/y/z directions m

s
Float

position std dev Standard deviation of the position - Float
velocity std dev Standard deviation of the position - Float
rcs radar cross-section - Float

3.3.5 GPS Data Structure of Target Vehicles: All other
vehicles included in the dataset created GPS tracks as well.
The structure of the GPS tracks for each vehicle is identical

and can be seen in Table 13. Additionally, the positions of the
GPS devices on the vehicle are provided. The data structure
can be seen in Table 14.
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Table 11. Most important topics with the corresponding data
type of the Novatel ProPak6 RTK-GPS on our test vehicle.

Topic Data type

/gps/corr imu novatel gps eth msgs/CorrImu
/gps/enhanced fix gps common/GPSFix
/gps/fix sensor msgs/NavSatFix
/gps/gga std msgs/String
/gps/imz sensor msgs/Imu
/gps/ins pvax novatel gps eth msgs/InsPvax
/gps/ins status std msgs/String
/gps/pos type std msgs/String
/gps/utm odom nav msgs/Odometry

3.3.6 GPS calibration process: All the vehicles taking
part in the measurement campaign were equipped with
RTK-supported GNSS for high-precision localization. All
the GNSS systems were calibrated for accurate positioning
results before being utilized in the actual measurement runs
on the M86 high-way road stretch. This calibration process
was conducted on the ZalaZONE || proving ground.

At the first step of the calibration process, the same
TCP/IP-based RTK correction service (NTRIP**) on each
test vehicle was set up. On the next step, a specific reference
point was selected on the ZalaZONE proving ground and a
ground marking was drawn. In order to determine the GNSS
measurement uncertainties, the test vehicles were positioned
exactly at this reference point. For each vehicle, the front
number plate and the ground marking were aligned and the
onboard GNSS system position information was recorded.
Then, utilizing the mounting position of the antennas as
well as the outer dimensions of the vehicle, the accuracy
information was obtained and calibration in relation to the
reference point was completed.

3.4 Test Scenarios
In this subsection, we introduce 5 scenarios included in
the dataset. It needs to be pointed out that the tests
were conducted exclusively with manually driven vehicles
since the focus was gathering ground truth data. The
measurements were done during daylight and under good
weather conditions (sunny with some scattered clouds).

The selection of the 5 scenarios is mainly motivated by
the existing testing standards for ADAS function approval
tests as well as requirements for sensor model development.
For example, for the ACC ISO 20035:2019 (E) and
ALKS UNECE R157 approval tests, Test-Scenario-1, Test-
Scenario-2, and Test-Scenario-4 are relevant use cases for
evaluation. Scenarios 2-5 on the other hand, are useful for
sensor model development and validation purposes, where an
example of the probabilistic camera model development for
the MobilEye630 camera utilizing this dataset was reported
recently by the authors in Genser et al. (2021), with a
summary given as an application use case later in Section
4.1.

Test-Scenario-1 (Cut-in): In this scenario, 5 vehicles
were moving at a constant speed (with approximately 10-20
km/h) as depicted in Figure 5 on two lanes. The ego vehicle
was driving in the left lane before cutting in suddenly to the
free space in front of the last vehicle.

Figure 5. Test scenario-1 with ego vehicle cutting-in.

Test-Scenario-2 (Occlusion): In this scenario, a convoy
of 5 vehicles was moving at a constant speed (with
approximately 10-20 km/h) according to Figure 6, while
distances between the vehicles were varied equally. The
ego vehicle was in the furthermost position behind the
convoy. The target distances between each vehicle were set
consecutively as 1m, 5m, 10m, 30m, and 50m.

Figure 6. Test scenario-2 with ego vehicle at the rear.

Test-Scenario-3 (Separability): In this scenario, 3 vehi-
cles were standing next to each other as depicted in Figure 7
with the ego vehicle placed behind in the middle lane. The 3
target vehicles drove slowly away (around 10-20km/h) while
the ego vehicle stayed stationary or vice-versa.

Figure 7. Test scenario-3 with three targets increasing distance
to ego vehicle.

Test-Scenario-4 (Overtake by a truck): In scenario 4,
depicted in Figure 8, the ego vehicle first overtakes a
truck-trailer. After this maneuver, the vehicle decelerates
and reduces speed. Then the truck-trailer approaches and
overtakes the ego vehicle on the right. Finally, the ego vehicle
accelerates and overtakes the trailer again.

Figure 8. Test scenario-4 Overtaking of Truck

∥https://zalazone.hu/
∗∗https://igs.bkg.bund.de/ntrip/about
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Table 12. Most important parameters with the corresponding data types of the Novatel GPS data on our test vehicle.

Parameter Description Unit Value Range

latitude latitude of the GPS position ° Float
longitude longitude latitude of the GPS position ° Float
height Elevation above sea level m Float
roll deg roll angle of the vehicle ° Float
pitch deg pitch angle of the vehicle ° Float
azimuth deg azimuth angle or heading of the vehicle ° Float
std Standard deviations of all physical quantities - Float
week number week number in GPS calendar - Int
week seconds seconds since week started - Float

Table 13. Parameters with the corresponding data type of the GPS data structure of the other vehicles involved in the
measurement campaign.

Parameter Description Unit Value Range

Time date and time (format: ’25-06-2020 11:01:11.790’) - String
Latitude latitude of the GPS position ° Float
Longitude longitude latitude of the GPS position ° Float
LatStdDev latitude standard deviation - Float
LongStdDev longitude standard deviation - Float
Heading Heading of the vehicle ° Float

Table 14. Parameters of the GPS vehicle position on the vehicles involved in the measurement campaign.

Parameter Description Unit

Participant Name of the participant -
Car Type Type and name of the used vehicle -
Offset From Front position offset from front license plate along the vehicle length cm
Offset From Middle position offset from the middle along the vehicle’s width cm

Test-Scenario-5 (Stationary and flowing traffic): Sce-
nario 5, depicted in Figure 9, has three phases. In the
initial phase, the ego vehicle comes to a still stand just in
front of the single trailer. In the second phase, the single
truck is overtaken on the right by a convoy of vehicles
including a passenger vehicle, a truck with a trailer attached,
and a Smart. After this maneuver is done, the ego vehicle
accelerates and overtakes the convoy in the second lane.
Starting from the initial situation again, Phase I and Phase
II are repeated.

Figure 9. Test scenario-5 Stationary and flowing traffic

4 Application Use Cases
In order to demonstrate the utility of the new automotive
dataset with ground truth information, we give in this section

various application use cases or examples, which either
utilize the dataset (Section 4.1) or are direct observations
from it (Sections 4.2 and 4.3) calling for deeper analysis and
further exploitation. Even though these application examples
are relevant to general automotive systems development, they
are particularly useful for perception systems development
for automated driving.

4.1 Sensor Model Development
In this first use case, we present how the ViF-GTAD dataset
with ground-truth information can be utilized for sensor
model development. We shall do so by describing a sensor
model of the MobileEye camera utilizing the MobileEye
camera data (i.e., dynamic object lists) and the dynamic
ground-truth data (i.e., the positions of other traffic objects).
A possible approach for this, which is explained in detail in
a recent paper by the authors Genser et al. (2021), will be
summarized below.

The basic idea is to model detection errors of the
MobilEye camera, as they are known as a result of the
availability of the dynamic ground-truth data of every traffic
object involved in the test scenarios (see Section 3.4). Every
perception sensor, also including the MobileEye camera,
consists of a field of view (FoV), which is a circular segment
defined by an angle and a range. In the first step of modeling,
every object outside the FoV or occluded by other objects
is removed from the input object list. Every remaining entry
in the object list is given to the core of the model, where
the so-called kernel density estimation theory is combined
with the classical linear regression theory for the modeling of
the distance-based detection error and the natural scattering
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of the camera. In Figure 10 and Figure 11 a representative
comparison of this camera model against the ground-truth
data and the actual MobilEye measurement data are shown.
In both figures it can be seen that the simulated sensor model
is closer to the measured data comparing it to the ground-
truth, therefore the use of this sensor model is generating
more realistic sensor data than just taking the ground-truth
information. For a more detailed analysis see Genser et al.
(2021).

As a test case, one object from the previously described
scenarios has been utilized, which was omitted in the training
data for this sensor model, as this would falsify the results.
Here the results indicate that the sensor model fits well
with the measured data, and especially the scattering of the
camera is modeled satisfactorily.
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Figure 10. Results of developed MobileEye camera model
utilizing the ViF-GTAD dataset with ground-truth data.
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Figure 11. Comparisons of the Gaussian fit of the divergence
of the measured (MobilEye630) and simulated sensor data from
the ground-truth utilizing the ViF-GTAD dataset.

4.2 Development and Testing of Sensor
Fusion Algorithms

The second use case example of how the ViF-GTAD dataset
can be used in the scope of automated driving concerns the
development and testing of sensor fusion algorithms. Multi-
sensor fusion is a commonly utilized technique in automated
driving to improve the robustness of the corresponding
perception algorithms. This originates from the fact that
each environmental sensor has a number of weaknesses
(e.g., poor low-light performance of cameras, interference,
cross-talk in radar, etc.), which can be alleviated by using
redundant sensor modalities to combine the benefits of
each sensor. This ensures that corresponding perception

algorithms work with higher performance and confidence
under changing environmental conditions, which in turn
increases the availability of the corresponding ADAS/AD
functions.

ViF-GTAD dataset contains three main environmental
sensor modalities including lidar, radar, and camera,
which are typically used in automated driving vehicles in
superfluous combinations. These sensors can be combined
in different ways to enable testing and validation of newly
developed sensor fusion algorithms thanks to the GPS
ground-truth data available from the target objects. The GPS-
based ground-truth tracks of each target vehicle should allow
testing of the perception and sensor fusion algorithms against
the measured values. This should particularly be useful
for example, for testing multi-object tracking and object
detection algorithms.

The radar sensor can measure the speed of a target object,
detect occluded objects, is only very slightly influenced
by adverse weather, and has no issues with changing
illumination conditions. It is, however, very hard to detect
the exact location, size or shape of an object with a radar. An
object can reflect n radar points depending on the material
properties and the shape of the object. These reflections can
be in any position on the object, making it hard to determine
the exact location and size of an object.

Lidar on the other hand can detect the exact position,
shape, and size of an object thanks to a dense point cloud
generated, and has only very minor issues with bad lighting
conditions. Lidar, however, cannot detect the speed of an
object efficiently, cannot see past an obstacle, and has issues
with bad weather conditions.

The MobilEye camera can be used to detect and classify
objects in a scene very easily. It has issues, however,
with longitudinal position (distance) and size estimation of
an object, and cannot see past obstacles. Furthermore, it
has low performance in adverse weather as well as low-
light conditions due to reduced visibility, and also cannot
efficiently cope with rapidly changing illumination.

In Figure 12 a birdseye-view of one frame in scenario
3 can be seen. The green bounding boxes are generated
from the GPS coordinates of the corresponding vehicles
and transformed into the ego coordinate system to allow
for a comparison of the bounding box with the lidar and
radar points. Figure 13 the same frame can be seen from
an ego perspective. Here the shapes of the vehicles detected
by the lidar can be seen clearly. In both images, it can be
seen, that the bounding boxes match the points of lidar and
radar quite well. Since there is always a standard deviation
for measured data from sensors, the bounding boxes and
sensor measurements do not correlate perfectly. The standard
deviations for each GPS measurement are given in the files.
The data sheets of the sensors give standard deviations as
well which makes it possible to incorporate these parameters
in any calculation. Autonomous driving functions in real life
need to deal with such standard deviations since the sensor
data they rely on, always come with a standard deviation.
Therefore, by considering such effects already in the design
phase of AD functions, the reliability of the function can be
increased.
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Figure 12. Birdseye-view of one frame of scenario 3. The ego vehicle is positioned at the origin of the coordinate systems. The
tuples in brackets above each bounding box are referring to the GPS position (red triangle) of the vehicle in meters with respect to
the ego vehicle.

Figure 13. View of the same frame as in Figure 12 from the ego’s perspective.

Now, we give specific examples of how different sets of
these sensors can be combined or fused with possible benefits
and potential deficiencies.

4.2.1 Lidar+Radar Fusion: Lidar and radar in combina-
tion would allow for the detection of a non-occluded object
with its speed and shape. This would allow, e.g., a classifica-
tion of the object or a prediction of its behavior. In this case,
occluded objects can still be detected but with uncertainty in
their shape and exact position.

4.2.2 Radar+Camera Fusion: A combination of radar
and camera would allow for the detection of speed, distance,
and class of each object in the field of view of both
sensors. While occluded objects can still be recognized, their

exact location, shape, and class can not be determined with
certainty.

4.2.3 Lidar+Camera Fusion: A combination of lidar and
camera would allow for an exact determination of the
position, shape and class of an object. However, occluded
objects remain hidden and the speed of objects cannot be
determined easily.

4.2.4 Radar+Lidar+Camera Fusion: A combination of
the three sensors would allow for the detection of speed,
distance, position, shape, and class of each non-occluded
object in the field of view of all three sensors. Occluded
objects can still be recognized, though their exact location,
shape, and class can not be determined with certainty.
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The analysis of the ViF-GTAD dataset resulted in
interesting observations, for example regarding the radar
reflections from a truck-trailer combination. Radar-only
reflections may be quite insufficient in clustering and
classifying them as a truck or a set of closely driving cars,
whereas a combination with lidar or camera may easily solve
this issue.

4.3 Lidar-based Localization

In the third use case example for the ViF-GTAD dataset,
we look at the localization problem utilizing lidar sensors
and describe how the dataset can be used as the basis for
evaluating the performance of such localization algorithms.

Localization of the ego vehicle as well as the other objects
around the vehicle is a crucial part of autonomous driving.
Ego vehicle localization is typically achieved with GNSS
data, or utilizing a 3D map in conjunction with lidar based
on an algorithm such as the NDT (normal distributions
transform) matching. Based on ego localization, relative
localization of the surrounding objects can be made. Lidar
point clouds can be used to determine the shape, size, and
position of an object. This makes lidar an ideal choice for
localization purposes. To localize the surrounding objects,
the ego vehicle can either communicate with the other
objects to inquire about their positions or measure their
positions themselves utilizing the onboard environmental
sensors. Since communication with other objects is not
always possible since, e.g., pedestrians won’t send their
position to the ego vehicle, a precise localization pipeline of
surrounding objects is essential for accurate and continuous
assessment of the environment as a basis for the decision-
making process. Accurate and high-precision estimation of
the position of the surrounding objects allows for safe
and efficient navigation and enables better reactions in
emergency situations.

The ViF-GTAD dataset provides lidar point clouds, the
highly-accurate GPS tracks of target vehicles, the exact
location of the GPS modules on the target vehicles, and
the precise dimensions of each target vehicle. Therefore, a
lidar-based localization pipeline for external object detection
could easily be tested and verified using this dataset.

Accurate bounding boxes as well as the exact shapes
of the target vehicles can be generated, and placed at the
measured precise GPS positions. The lidar point clouds
generated by our test vehicle as part of the ViF-GTAD dataset
can be used as input to object detection as well as the
localization pipelines and the results can be compared with
the GNSS-based target vehicle bounding boxes to determine
the accuracy of the localization/object-detection pipelines.
In doing so, the position and orientation of the GNSS-
based (ground-truth) target vehicle bounding boxes with that
of the lidar point-cloud-based ones at different distances,
angles, and speeds should be a good basis for comparison to
measure the respective spatial and temporal performances of
the perception pipelines. Such a study is planned as a future
work for this paper.

5 Conclusion
This paper provided insight into the capturing of the
ViF GTAD dataset, explicitly explaining the content and
metadata structure.

A drawback of current state-of-the-art public datasets is
that they only provide ground truth data from the perspective
of the ego vehicle. In addition to the captured in-vehicle
sensor data, this dataset also provides GNSS ground truth
data of the target vehicles.

Another issue of many public datasets is limited or missing
provisioning of metadata. Within this paper, we give precise
and highly accurate descriptions of the metadata, strictly
following the FAIR data usage principle to enable easy and
simple reuse of the provided data.

By showing three use cases building on the ViF-GTAD
dataset, an idea of the potential that rests in the usage of the
dataset was shown. This work is of high relevance as it can
be, applied and implemented in relation to automated driving
and environmental perception systems development, testing,
and validation.
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Nomenclature
ACC Adaptive Cruise Control

AD(S) Automated Driving (System)

ADAS Advanced Driver Assistance Systems

ADD Automated Driving Demonstrator

AI Artificial Intelligence

ALKS Automated Lane Keeping System

CAN Controller Area Network
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DDT Dynamic Driving Task

DGPS Differential GPS

EPS Environment Perception System

FAIR Findable, Accessible, Interoperable, and Reusable

FoV Field of View

GNSS Global Navigation Satellite System

GPS Global Positioning System

GTAD Ground Truth for Automated Driving

ISO International Organization for Standardization

Lidar Light detection and ranging

NTRIP Networked Transport of RTCM via Internet
Protocol

ODD Operational Design Domain

ROS Robot Operating System

RTK Real Time Kinematic

SAE Society of Automotive Engineers

TCP/IP Tranmission Control Protocol / Internet Protocol

UNECE UN Economic Commission for Europe

V iF Virtuelles Fahrzeug (Virtual Vehicle Research
GmbH)

V RU Vulnerable Road User
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Déziel JL, Merriaux P, Tremblay F, Lessard D, Plourde D,
Stanguennec J, Goulet P and Olivier P (2021) Pixset : An
opportunity for 3d computer vision to go beyond point clouds
with a full-waveform lidar dataset.

Ettinger S, Cheng S, Caine B, Liu C, Zhao H, Pradhan S, Chai
Y, Sapp B, Qi C, Zhou Y et al. (2021) Large scale interactive
motion forecasting for autonomous driving: The waymo open
motion dataset. arXiv preprint arXiv:2104.10133.

European Commission (2019) Eu road safety policy framework
2021-2030 - next steps towards ”vision zero”. URL
https://ec.europa.eu/transport/road_

safety/what-we-do_en. [Online; accessed 26-
November-2021].

Fagnant DJ and Kockelman K (2015) Preparing a nation
for autonomous vehicles: opportunities, barriers and policy
recommendations. Transportation Research Part A: Policy
and Practice 77: 167–181. DOI:https://doi.org/10.1016/j.
tra.2015.04.003. URL https://www.sciencedirect.

com/science/article/pii/S0965856415000804.
Geiger A, Lenz P, Stiller C and Urtasun R (2013) Vision meets

robotics: The kitti dataset. The International Journal of
Robotics Research 32(11): 1231–1237.

Genser S, Muckenhuber S, Solmaz S and Reckenzaun J (2021)
Development and experimental validation of an intelligent
camera model for automated driving. Sensors 21(22). DOI:
10.3390/s21227583. URL https://www.mdpi.com/

1424-8220/21/22/7583.
Geyer J, Kassahun Y, Mahmudi M, Ricou X, Durgesh R, Chung

AS, Hauswald L, Pham VH, Mühlegg M, Dorn S et al. (2020)
A2d2: Audi autonomous driving dataset. arXiv:2004.06320.

Haas S, Solmaz S, Reckenzaun J and Genser S (2023) ViF-GTAD:
A new Automotive Data Set with Ground Truth for ADAS/AD
Development, Testing and Validation. DOI:10.5281/zenodo.
7808255. URL https://doi.org/10.5281/zenodo.

7808255.
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