• 1

Robust perception systems for automated, connected, and electrified vehicles: Advances from EU project ArchitectECA2030

Jakob Reckenzaun; Thomas Goelles; Selim Solmaz; Marc Hilbert; Daniel Weimer, Peter Mayer, Adam Chromy, Uwe Hentschel, Niels Modler, Mate Toth, Marcus Hennecke

Abstract: The perception supply chain (SC1) of the ArchitectECA2030 project investigates failure modes, fault detection, and residual risk in perception systems of electrified, connected, and automated (ECA) vehicles. This accounts for the needs of a reliable understanding of the surrounding environment. The three demonstrators of SC1, described in this paper, address steps of a typical ECA usage cycle: charge - drive - restart charging. The foreign object detection (FOD) demonstrator improves safety within a wireless charging system. The robust physical sensors demonstrator creates a more robust perception by detecting failures within fused and single sensor data. The position enhancement demonstrator improves vehicle localization in areas with reduced GNSS signal coverage. All demonstrators are linked to the challenges that occur during the ECA vehicle usage cycle


Robust perception systems for automated, connected, and electrified vehicles: Advances from EU project ArchitectECA2030


 

Acknowledgement

ArchitectECA2030 has been accepted for funding within (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programs under grant agreement No 877539.

The project will receive an ECSEL JU funding up to 4 M€ completed with national budgets from national funding authorities in Germany, Netherlands, Czech Republic, Austria and Norway.  

Project Facts

Short Name: ArchitectECA2030

Full Name: Trustable architectures with acceptable residual risk for the electric, connected and automated cars

Duration:  01/07/2020- 30/06/2023

Total Costs: ~ € 13,6 Mio.

Consortium: 20 partners from 8 countries

Coordinator: Infineon Technologies AG

Funding

 

Horizon 2020
Horizon 2020

 

    

National Funding

National Funding

 


Social

Twitter

Twitter

    

LinkedIn

LinkedIn

 

Information

Impress

Imprint

   

Impress

Privacy Policy


 


Contact

Twitter
Contact