• 1

 

Project Coordinator


 

Dr Georg Stettinger

 
Infineon Technologies AG
81726 München
Germany

A Continuously Updated Package-Degradation Model reflecting Thermomechanical Changes at Different Thermo-Oxidative Stages of Moulding Compound

Adwait Inamdar, Michiel van Soestbergen, Amar Mavinkurve, Willem van Diel, GuoQi Zhang

Abstract: Moulding compounds used for encapsulating electronics typically occupy a large portion of package volume and are most exposed to the external environment. Under harsh conditions such as high temperature, humidity, and mechanical vibrations, constituent materials of electronic components degrade, resulting in a change in their thermal, mechanical, electrical, and chemical behaviour. High-temperature ageing of electronic packages causes the oxidation of epoxy moulding compounds (EMC), forming a layer exhibiting significantly different thermomechanical properties. This reflects in the modified mechanical behaviour of the entire package, which accelerates certain failure modes and affects component reliability. Thus, it is crucial to consider gradual degenerative changes in EMC for a more accurate estimation of the component lifetime. This paper proposes a three-step modelling approach to replicate thermo-chemical changes in package encapsulation. A parametric geometry of a test package was incorporated with the ageing stage-dependent changes in thermomechanical properties of the oxidized layer. The mechanical behaviour of oxidized EMC at multiple stages of thermal ageing (at 150°C for up to 3000 hours) was first experimentally characterized and then validated using warpage measurements on thermally aged test packages and Finite Element (FE) simulations. Lastly, a trend-based interpolation of material model parameters for intermediate stages of ageing was followed, and a continuously updated degradation model (physics-based Digital Twin) was achieved. The proposed model is capable of reproducing degraded stages of the test package under thermal ageing along with its modified thermomechanical behaviour. Its limitations and significance in the domain of health monitoring of microelectronics are also discussed.


A Continuously Updated Package-Degradation Model reflecting Thermomechanical Changes at Different Thermo-Oxidative Stages of Moulding Compound


 

Acknowledgement

ArchitectECA2030 has been accepted for funding within (ECSEL JU) in collaboration with the European Union’s H2020 Framework Programs under grant agreement No 877539.

The project will receive an ECSEL JU funding up to 4 M€ completed with national budgets from national funding authorities in Germany, Netherlands, Czech Republic, Austria and Norway.  

Project Facts

Short Name: ArchitectECA2030

Full Name: Trustable architectures with acceptable residual risk for the electric, connected and automated cars

Duration:  01/07/2020- 30/06/2023

Total Costs: ~ € 13,6 Mio.

Consortium: 20 partners from 8 countries

Coordinator: Infineon Technologies AG

Funding

 

Horizon 2020
Horizon 2020

 

    

National Funding

National Funding

 


Social

Twitter

Twitter

    

LinkedIn

LinkedIn

 

Information

Impress

Imprint

   

Impress

Privacy Policy


 


Contact

Twitter
Contact